
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7009

Efficient Automated Build and Deployment

Framework with Parallel Process

Prachee Kamboj
1
, Lincy Mathews

2

Information Science and engineering Department, M. S. Ramaiah Institute of Technology, Bangalore, India 1, 2

Abstract: Continuous integration has been in theory for a long time but successful practicing is still a dream. To
resolve the integration problems and increase the customer satisfaction, it is important to follow the practice of

continuous integration in software development. Doing manual build and deployment regularly results in lot of time

consumption and thus becomes an inefficient process. This paper proposes architecture for build and deployment by

following best practices. It aims to fully automate the build process by using some available tools for source

management, binary management and compilation. Build architecture gives a method to integrate all tools in build

server. Successful completion of build is followed by deployment. This paper also proposes a deployment architecture

which is common for all development environments. Deployment architecture states three steps, required to do the

deployment and also proposes optional features to enhance the deployment process.

Keywords: Automation, Build, Continuous Integration, Deployment, Parallel

I. INTRODUCTION

Software development is done in different environments.
Generally industry follows four environments which are

Development, Quality Assurance, Stage, and Production

[1]. Before delivering the software to the customer it is

essential to test the software and ensure the quality of

software. The environments should not intersect as the

activities between each group in software development

should not interfere with one another. The development

environment is used for developing the application. Users

in development environment can expect the application to

change often and be broken for extended periods of

time. The Quality Assurance environment is used for
testing. The staging environment is the dummy of

production environment and is used to test the application

for production environment without having users

accessing the application. This environment is used to

make sure security settings are correct and that other

services on the user computer or server do not interfere

with the application. The production environment is the

environment where the users actually run the live

application. Changes to this environment happen in

periodic updates to the software after the application

changes have passed through the previous three

environments.
The other environments help ensure that the application is

well tested and stable when it is released.

Build and deployment is an integral part of any software

development process. Software build refers to the process

of compiling the source code into a form which can be

deployed in a computer or a server. In an environment like

development and quality assurance, build and deployment

can be done many times in a day also. It makes sense to

make whole build and deployment process automated.

Automation is being adopted by many organization for its

unmatchable advantages compared to manual process. Fig
1 shows the block diagram of build and deployment

automation on different development environments
 [1]

.

Figure 1: Build and Deployment automation for different development

Environments

This paper proposes a new build and deployment

framework suitable for enterprise. Framework has focused

on automation and introduction of parallelism to increase
efficiency and reduce response. Build and deployment

process is same for all environments to avoid confusion

for the users.

II. BUILD

A. Build Steps

Conventionally building software is referred to as

converting the source code into executable file [2]. In this

era of software development getting mature, it needs to do

some more tasks which makes the build stable and more

meaningful. It is an end-to-end process that comprises of

many steps as shown in figure 2 below.

Figure 2: Block diagram of Build Steps

Creating a Clean Build Location prepares an environment
for the build process to execute. Same source code file can

be modified by many users simultaneously. To maintain

consistency, user’s files are tagged. Original copies of all

source files are labelled in baseline separately. Labelling

the source code approves the source file which is

consistent among all files. Running Pre-Build Tasks

includes capturing metadata about the code like setting the

version number for the output file, etc. Compiling the

Code & Linking Libraries includes Unit and integration

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7010

testing is also done before compilation to ensure

reliability. Other types of testing can be done depending

on the application requirement. At the end, it outputs the

executable code which is ready for deployment.

B. Build Automation

Agile software development is a proven method adopted

by many enterprises. Among the basic principle of agile

software development methodology is contiguous

integration [4] [5]. Continuous integration is a practice based
on principle of detecting integration error in early stage. It

is practiced by integrating developers codebase many

times in a day. Usually integration is done at least on daily

basis. Build is a repeated process, done in every

environment before going live for the users of application.

Even if one is not practicing continuous integration, build

automation is required. Build automation helps in

improving the software quality, reduces compile and

linking the library time, eliminates redundant tasks [3],

minimizes broken builds occurrence, reduces key

personnel dependencies, improves traceability through

logging the build steps etc.

C. Build Architecture

Figure 3 explains the build process. In build architecture
steps 2 to 7 can be automated if one is practicing

continuous Integration, else user can trigger the build

manually to initiate the build so that steps 3 to 7 are

automated.

The key component of this architecture is to set a build

server. Build server is the next step to have a stable and
robust build. [9] This server is the heart of the whole build

process. Build server performs all major tasks like pulling

down the latest labelled source code, acts as a continuous

integration server by installing build tool which triggers

build automatically, does the compilation of the source

code etc. Build server will always have the clean code of

the source code label. Build server will also publish the

binary to binary repository management system. It even

resolves the encoding dependency problem for binaries.

Software development process produces mainly source

code and binary artifacts (or executable code) which serve
different purpose. Source configuration management

system is commonly required where there are multiple

developers working on the same project concurrently on

same set of source file. It helps in source control, change

management, and in version control. It keeps the track of

the changes happening in the file, assigns a temporary

number to the users file and keeps the original file

preserved. When a developer is satisfied with the source

file then source file is checked in to source configuration

management server to create a new version of the file. If

many users check in the file at same time then the source

configuration management server combines the changes
and is merged to create a new version of file.

Figure 3: Build Architecture

There are many ways to trigger build but as this paper

talks about continuous integration practice, this step

should be automated. Ideally as soon as developer

commits the source code in source code repository, build

should be triggered. Build can be scheduled for nightly

basis and there should be scope of manually triggering the

build. After this all steps should be automated and

executed sequentially.

In build server, build tool creates a clean build location for

the build and deletes old temporary build space that is not

required for the current build. Build tool is configured to

get the latest source code in the build server from source

configuration management server. This source code is

stored in build server and it should not be modified further

in the build server. Compiling the code is the major step

and the most time consuming step. Code is compiled base

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7011

on the compiler required by the application programming

language. Unit testing can also be performed as part of this

step. After successful completion of the testing, it should

be archived with a meaningful label on it. It should have
some numbering or a time stamp value to distinguish the

file from the other builds.

Once the build is completed, archived file should be send

to the Binary Repository Management server at a common

location for all the builds of this application. Doing so

helps other team members to download the file when

required. If a build fails concerned person should be

informed about the same. Build logs are also generated to

find the reason of the build failure.

III. DEPLOYMENT

A. Deployment Steps

Software deployment refers to collection of activities

which makes the software run on a particular or all

environments to use. In general, software deployment
process consists of interconnected tasks which are

dependent. All software is unique in itself, it has different

modules. Software applications are different and so is the

different way to execute the module in software. It’s hard

to come up with a standard approach but a general

approach can be proposed which then can be customized

according to the requirements and characteristics of the

project. Deployment has its list of general activities [11] as

shown below in figure 4.

Figure 4: General Steps of Deployment

Before starting the deployment it’s important to know the

site and collect the information from where deployment

activities actually have to be carried out. Sites have to be

installed with the executables required by the application

as part of pre-deployment step. For complex system, it is

recommended to keep the installation ready as part of pre-

deployment step. Executables need to be deactivated or

stopped if started previously. This process replaces the

earlier version of software system with the latest release.
Verification of successful deployment is done at last as to

follow the best practice.

B. Deployment Architecture

Build server is the same server used for build automation.

This architecture describes four development

environments; it can be extended for more environments if

required. All servers are connected in private network but

this architecture works fine for any networked devices.

One prerequisite to this architecture is to have a common
mounted point for all local servers of an environment. [12]

Fulfilling this requirement reduce the execution time

drastically, saves the server space and removes redundant

copies of the file. To start the deployment, the user

remotely logins to the build server and execute the main

script that is the starting point of the deployment

execution.

Figure 5: Deployment Architecture

Script should take the required arguments like software

development environment, version of the build and service

name. Software development environment, value can be

given as dev, qa, stage or production as shown in figure 5.

Version of the build, is the part of label of the archived file

stored in binary repository management server during the

build process. Service name, value can be “full” or “name

of the services”. Giving “full” as the value of the service
name, script does the full deployment. In full deployment,

all the services of the software application are deployed.

Giving “name of the services” as the value for the service

name, script does partial deployment. In partial

deployment, only services given in argument are deployed.

So this situation arises to two cases deployment that is full

deployment and partial deployment. Full deployment

usually happen when all modules of software have gone

for a big change, when there is a new environment

introduced or there is change in configuration of the

environment. In Partial deployment, happens only when
some services have gone for a change and needs to be

deployed again. Script also validates the correctness of the

arguments from the configuration files like checking of the

service name and etc. Once validating is done, script looks

for the configuration file related to that software

development environment to get the configuration details

to execute step 1, step 2 and step 3 sequentially.

C. Step 1: Download and Extract

Download the binary from the binary repository
management server based on the version number given in

the argument that is w.x.y.z. Binary can be any form like

tar, tar.gz , war, zip, etc. The type of file depends on

packaging and achieving done in build process. Once the

binary is downloaded to the desired location in the local

server, then the file should be extracted in other folder. It

is recommended to create folder name having version

number on it. This step needs to be done only once in any

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7012

server because server volume is mounted on a common

mount point.

D. Step 2: Unmount and Mount

Once the extracted folder is available, it contains some

files like jar, war, ear etc files, if project is in java and

similarly for projects in other different languages. Let’s

refer these files as services of the project. This architecture

introduces the concept of mounting the services of

extracted folder to different folder. This is achieved by

creating soft link. Let’s call the folder as

“current_services”. In folder current_services create link

pointing to the service file of the current build version
number. This looks like as shown in figure 6.

In figure 6 first line stated as “Service1 -->

app_binary_1.2.3.4/service1.ext” has its meaning as
explained. Here app_binary_1.2.3.4 is extracted folder

from the binaries generated during the build. service1.ext

is file in extracted folder. Service1 is the soft link created

in current_services folder pointing to the

app_binary_1.2.3.4/service1.ext

Figure 6: After Mount, for Partial Deployment

Deployment can be done without creating soft link. Let’s
discuss the requirement of creating soft link. It is advisable

to deploy only the services whose source code has been

changed compared with previous version, which is called

partial deployment. Partial deployment decreases

execution time. As shown in figure 6 the case of partial

deployment, service pointers points to different version

executables. In figure 6 each service has a soft link that is

pointing to the currently running version executable in that

environment. Unmount removes the current link and

mount creates the link for the required version executable

of that service. In case of full deployment all service
pointers in current_services will be pointing to the same

version executables. Even if a service is to be run in

different servers then also this step is executed only once

for a service because the server volume is mounted at

common mount point.

Following this method gives the benefits of debugging

basic information about deployment like to enquire the

version running for a service. It’s easy to check the

current_services folder under which each service has a soft

link pointing to a current running executable location. In

figure 6, Service1 is running for build version 1.2.3.4,

Service2 is running for build version 1.2.3.6 and similarly
for other services also. In the example Service2 is running

the latest code.

E. Step 3: Restart

A service can run on more than one server to resolve

issues like load balancing etc. This step should be

executed on all the servers where a service will run.

Starting and stopping a service is application dependent.

Every application has its own way of executing this step.

The best practices recommended is to first stop the service

followed by verification and only then start the service

followed by verification. Verification should be done to
get the confirmation of whether the service has stopped or

started successfully and correctly in the correct server. To

start a service, execute the service link created in step2

under current_services folder where link is actually

pointing to the latest executables required.

F. Parallelism

In the proposed architecture of deployment, parallelism is

introduced to increase efficiency and to reduce the

execution time. Parallelism is introduced by creating
process on a local server concurrently while reading the

configuration file for that environment. Thus when process

is created for local server1, then server sends the created

process in background and server creates another process

for server2. All process running in background are

monitored simultaneously to obtain the logs.

As shown in figure 7 there is dependency in the step 1,

step 2 and step 3 but internal steps can be executed

concurrently. Once all background process executing

internal steps of step 2 or step 3 have finished the

execution, only then execute the next step.

Figure 7: Frequency and Dependency in Steps of Deployment

G. Other Features

Maintaining logs is the most important part of automated

deployment. If something goes wrong it’s easy to track the
occurrence of the fault. In the architecture proposed logs

are maintained in the build server. It allows easy access to

the logs as user has already remotely logged in build

server. It’s useful to give the report or deployment

summary clearly mentioning the errors occurred as this

can save users time. If a service is not deployed properly

then it should be reverted back to the previous version.

This makes the process more reliable. Deployment

process can be extended to have access based on the role

e.g. developers should be allowed to deploy only in the

Development environment and not in Stage and

Production environments. Sending emails at the ends of
deployment to the concerned persons like manger, team

leader etc. helps the authorities to track what is happening

and who is doing it. If a new environment is introduced or

configuration of an environment is changed then it

shouldn’t be a headache to incorporate the changes. A file

is created in the remote server which keeps the track of

who is deploying what and in which environment.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7013

IV. BUILD AND DEPLOYMENT

In a company standard following Continuous Integration

practice, build and deployment should be merged together.

In build process, once the build is successful that is build

is published to the binary repository and concerned people

are notified, then as the post build action deployment

script should be executed. Once deployment is successful

an automated testing suite can be executed to validate the

application based on the testing requirement of the
application.

V. CASE STUDY

A web based application is developed using java as the

programming language. The application consist of eleven

major modules, each module performs specific task related

to the application requirement. Application is running

inside a web container here using Tomcat. Apache tomcat

is installed on the local servers of the environment in four

instances. For the build a specific build server is

configured as per the proposed architecture. On a different

machine source configuration management server is

installed. Perforce is used as the source configuration
management tool. [7] [8] Jenkins is a continuous integration

tool used as a build tool [6]. Apache Ant and maven are

used for resolving dependency during build and for

archiving. JFrog artifactory is used as a binary repository

management tool. [10]

Once the build is completed a tar.gz is published to the

artifactory. The tar file has 10 jar files and one war file

packaged. The war file will be deployed inside the web

container i.e. tomcat. To start the deployment shell scripts

[18] are written which will run on remote server and on

local servers. For every deployment steps a local script is
written in the local server. Remote scripts are written to

call the local scripts. The work of remote scripts is to

actually control the frequency and parallelism in the

process. As per the argument remote scripts gets server

name, file name, instance of a service, local user name,

server volume, etc from the configuration file of the

environment.

VI. EXPERIMENTAL RESULTS

A. Terms

Table I: Descriptions corresponding to symbols and

parameters used in equations

PARAMETER DESCRIPTION

N number of services to be deployed

td time taken to download the binary

tm time taken to unmount and mount a

service

ts time taken to restart a service on

one server

k1 amount of overhead created to

access local server from remote

k2 amount of overhead created due to
parallelism

Table II: Description of a service running on how many

servers

SERVICE

NAME

NO OF SERVERS SERVICE

RUNNING ON

Service1 c1

Service2 c2

Service3 c3

:

:

:

:

ServiceN-1 cn-1

ServiceN cn

B. Measure

Let 1 2 3P c c c cn     (1)

P is the total number of instances running on the local
servers. A server can have two or more instance running of

same or different service running on the same server.

1

N

i

i

P c


 (2)

To deploy an application remote server takes time T.

1 1(k t) NP(k t)d m sT t N     (3)

Due to parallelism introduced in deployment, deployment

time reduces as shown in equation 4.

1 1 2(k t) (k t) kp d m sT t      (4)

Where k1 and k2 are constants. For a large application, k2 is

small value as compared to N and P. For large application

equation 4 can be generalized as shown in equation 5.

2t t kp d m sT t    (5)

C. Results

Figure 8 shows the comparison between total deployment

time in second manual deployment, automated deployment

and automated deployment with parallelism.

Figure 8: Effect of automation and parallelism

Figure 9 shows the comparison of deployment time in

seconds for three different cases due to deployment

perquisite of having a common mount point of all servers

in an environment. Deployment time taken in case of full

deployment, of a build version w.x.y.k and in case of

deploying a service of another version is almost same. But

again time to deploy another service of the same version is

very less because of the proposed solution to have a

common volume of all the servers in an environment. This

eliminates the step to download again which takes the

http://www.ijarcce.com/

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 6, June 2014

Copyright to IJARCCE www.ijarcce.com 7014

maximum time as build file are generally very big for an

application.

Figure 9: Effect of frequency reduction

VII. CONCLUSION

The main objective of this paper was to propose a solution

to efficiently automate the whole build and deployment

process. The proposed build architecture follows the best

practices and also introduces the types of tools required.

Deployment architecture has given generalized steps to be

executed which can be executed parallely and also reduces

the frequency of execution to reduce the deployment time.

Proposed methodology has been successfully implemented

and goal is achieved. Figure 8 and 9 shows the result of

the implementation.

REFERENCES

[1] Software development environments, http://smoothtesting

.blogspot.in/2011/09/different-nvironments.html.

[2] Software build, http://en.wikipedia.org/wiki/Softwarebuild.

[3] Build automation, http://en.wikipedia.org/wiki/Build _automation.

[4] Jez Humble, and Rolf Rusell, The agile maturity model applied to

building and releasing software, September 2009.

[5] Martin R. Bakal, Jennifer Althouse, and Paridhi Verma, Continuous

integration in agile development, August 2012.

[6] Build Tool – Jenkins, https://wiki.jenkins-ci.org/display/

JENKINS/Meet+Jenkins.

[7] Perforce, http://www.perforce.com/product/perforce

[8] Source configuration management tool comparison between

subversion & perforce, http://www.perforce.com

/sites/default/files/pdf/perforce-subversion-comparison.pdf

[9] Why a build server is required, http://blog.bengarney.com

/2012/09/01/some-thoughts-on-build-servers/

[10] Binary repository management tool – Jfrog Artifactory,

http://www.jfrog.com/home/v_artifactory_opensource_oveview

[11] Software deployment, http://en.wikipedia.org/wiki/

Software_deployment

[12] Understand linux shell and basic shell scripting languages,

http://www.tecmint.com/understand-linux-shell-and-basic-shell-

scripting-language-tips/

[13] O. Bushehrian, Automatic object deployment for software

performance enhancement, IET Softw., 2011, Vol. 5, Iss. 4, pp.

375–384, June 2011.

[14] Tomas Kucera, Petr Hnetynka, and Jan Kofron, Automated

Deployment of Hierarchical Components, R. Lee (Ed.): Software

Engineering, Artificial Intelligence, Networking, SCI 443, pp. 117–

128, 2013.

[15] International Technical Support Organization, The Software

Deployment Mystery – Solved, August 2004.

[16] Takoua Abdellatif, Didier Hoareau, and Yves Maheo, Automated

Deployment of Enterprise Systems in Large-Scale Environments,

OTM Workshops 2006, LNCS 4277, pp. 30–31, 2006.

[17] Introduction to Linux, http://www.linux.org/

[18] Bash reference manual, http://www.gnu.org/software/

bash/manual/bashref.html

http://www.ijarcce.com/

